From version < 21.2
edited by Gijs Zwartsenberg
on 2021/06/11 13:28
To version < 12.1 >
edited by Jan Rhebergen
on 2020/12/27 12:49
<
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.gijs_zwartsenberg
1 +xwiki:XWiki.jan_rhebergen
Tags
... ... @@ -1,1 +1,0 @@
1 -science|jupyter|python|energy|nuclear|gitlab
clear-power-for-all_LOGO.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.jan_rhebergen
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
Blog.BlogPostClass[0]
Category
... ... @@ -1,1 +1,1 @@
1 -Blog.Antinuclearism - debunking
1 +Blog.Debunking
Content
... ... @@ -1,4 +1,4 @@
1 -**SPOILER:** Yes it does,...(like almost any other activity, remember thermodynamics?) but infinitesimally especially compared to other sources. It is rediculously little!
1 +Yes it does,... but infinitesimally especially compared to other sources. It is rediculously little!
2 2  
3 3  # Redundant thermal energy released by nuclear power plants vs. the thermal energy as provided by the sun
4 4  
... ... @@ -6,90 +6,107 @@
6 6  
7 7  ## Calculate the incident infra-red solar energy at the surface of Earth.
8 8  
9 -```python
10 -import math
9 +
10 +```python
11 +import math
11 11  ```
12 12  
13 13  Earth radius in meters is:
14 14  
15 -```python
16 +
17 +```python
16 16  equatorial_radius = 6378e03
17 -polar_radius = 6357e03
19 +polar_radius = 6357e03
18 18  ```
19 19  
20 20  Approximate Earth surface exposed to solar irradiance can be calculated from  $\pi\cdot r^2$. This can be though of as a disc (plane) facing the sun (i.e. perpendicular to the rays) that is illuminated by sunlight.
21 21  
22 -```python
24 +
25 +```python
23 23  earth_disc_surface = math.pi * equatorial_radius**2
24 -print('irradated surface area: ', earth_disc_surface,'m^2')
27 +print('irradated surface area: ', earth_disc_surface,'m^2')
25 25  ```
26 26  
27 27   irradated surface area:  127796483130631.38 m^2
28 28  
32 +
29 29  Sunlight's composition at ground level, per square meter, with the sun at the zenith, is about 527 watts of infrared radiation, 445 watts of visible light, and 32 watts of ultraviolet radiation.
30 30  
31 -<https://ag.tennessee.edu/solar/Pages/What%20Is%20Solar%20Energy/Sunlight.aspx>
35 +https://ag.tennessee.edu/solar/Pages/What%20Is%20Solar%20Energy/Sunlight.aspx
32 32  
33 -```python
34 -infrared_sol_power = 527
37 +
38 +```python
39 +infrared_sol_power = 527
35 35  ```
36 36  
37 37  Total solar infrared power available at the surface is thus:
38 38  
39 -```python
44 +
45 +```python
40 40  earth_sol_power = earth_disc_surface * infrared_sol_power
41 41  print('Total power: ',earth_sol_power / 1e12, 'Tera Watt' )
42 -print('Total power: ',earth_sol_power / 1e15, 'Peta Watt')
48 +print('Total power: ',earth_sol_power / 1e15, 'Peta Watt')
43 43  ```
44 44  
45 45   Total power:  67348.74660984274 Tera Watt
46 46   Total power:  67.34874660984273 Peta Watt
47 47  
54 +
48 48  Total energy delivered over a year is thus:
49 49  
50 -```python
57 +
58 +```python
51 51  earth_sol_energy = earth_sol_power * 24 * 365
52 -print('Total energy: ', earth_sol_power * 24 * 365 / 1e18, 'Exa Watt hour' )
60 +print('Total energy: ', earth_sol_power * 24 * 365 / 1e18, 'Exa Watt hour' )
53 53  ```
54 54  
55 55   Total energy:  589.9750203022223 Exa Watt hour
56 56  
65 +
57 57  ## Calculate the total thermal energy released by all nuclear power plants on Earth
58 58  
59 59  Nuclear energy now provides about 10% of the world's electricity from about 440 power reactors. In 2018 nuclear plants supplied 2563 TWh of electricity.
60 60  
61 -<https://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx>
70 +https://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx
62 62  
63 63  Nuclear power plants usually have efficiency about 33%. In modern nuclear power plants the overall thermodynamic efficiency is about one-third (33%), so 3000 MWth of thermal power from the fission reaction is needed to generate 1000 MWe of electrical power.
64 64  
65 -```python
74 +
75 +```python
66 66  electric_energy = 2563e12
67 67  efficiency = 0.33
68 68  thermal_energy = electric_energy / efficiency
69 -print('Initial thermal: ', thermal_energy / 1e12, 'Tera Watt hour')
79 +print('Initial thermal: ', thermal_energy / 1e12, 'Tera Watt hour')
70 70  ```
71 71  
72 72   Initial thermal:  7766.666666666666 Tera Watt hour
73 73  
74 -```python
84 +```python
75 75  released_energy = thermal_energy - electric_energy
76 -print('Released thermal: ', released_energy / 1e12, 'Tera Watt hour')
86 +print('Released thermal: ', released_energy / 1e12, 'Tera Watt hour')
77 77  ```
78 78  
79 79   Released thermal:  5203.666666666666 Tera Watt hour
80 80  
91 +
81 81  ## Ratio of solar infrared energy and heat released by nuclear power plants
82 82  
83 -```python
84 -ratio = released_energy/earth_sol_energy
94 +
95 +```python
96 +ratio = released_energy/earth_sol_energy
85 85  ```
86 86  
87 87  The ratio of thermal energy released by all nuclear power plants in the world over the period of a year, to the total delivered thermal energy by the sun over the period of a year is given below.
88 88  
89 -```python
90 -print(ratio)
101 +
102 +```python
103 +print(ratio)
91 91  ```
92 92  
93 93   8.82014744285448e-06
94 94  
95 -[Jupyter notebook can be found here: https://gitlab.com/JayBeRayBearGun/energy/-/tree/master#](https://gitlab.com/JayBeRayBearGun/energy/-/tree/master#)
108 +```python
109 +
110 +```
111 +
112 +
Extract
... ... @@ -1,1 +1,0 @@
1 -Yes it does,...(like almost any other activity, remember thermodynamics?) but infinitesimally especially compared to other sources. It is rediculously little! The ratio of thermal energy released by all nuclear power plants in the world over the period of a year, to the total delivered thermal energy by the sun over the period of a year is 8.82014744285448e-06
image
... ... @@ -1,1 +1,0 @@
1 -clear-power-for-all_LOGO.png

Child Pages

Page Tree